Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biomed Pharmacother ; 174: 116432, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38520868

RESUMO

Oxidative stress results from a persistent imbalance in oxidation levels that promotes oxidants, playing a crucial role in the early and sustained phases of DNA damage and genomic and epigenetic instability, both of which are intricately linked to the development of tumors. The molecular pathways contributing to carcinogenesis in this context, particularly those related to double-strand and single-strand breaks in DNA, serve as indicators of DNA damage due to oxidation in cancer cases, as well as factors contributing to epigenetic instability through ectopic expressions. Oxidative stress has been considered a therapeutic target for many years, and an increasing number of studies have highlighted the promising effectiveness of natural products in cancer treatment. In this regard, we present significant research on the therapeutic targeting of oxidative stress using natural molecules and underscore the essential role of oxidative stress in cancer. The consequences of stress, especially epigenetic instability, also offer significant therapeutic prospects. In this context, the use of natural epi-drugs capable of modulating and reorganizing the epigenetic network is beginning to emerge remarkably. In this review, we emphasize the close connections between oxidative stress, epigenetic instability, and tumor transformation, while highlighting the role of natural substances as antioxidants and epi-drugs in the anti-tumoral context.

2.
Chem Biodivers ; : e202400116, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38462536

RESUMO

Encapsulation has emerged as a vitally important tool for protecting the integrity of critical chemicals and improving the delivery mechanisms of natural/synthetic drugs, enabling the controlled release of ingredients and the maintenance of their chemical, physical, and biological properties. It is well known that essential oils (EOs) provide a valuable alternative for food preservation, as they help reducing the deterioration of foodstuffs as well as the proliferation of pathogens. Nevertheless, EOs are highly volatile and lipophilic, rendering them insoluble in aqueous systems. In addition, their secondary metabolites are extremely susceptible to environmental factors such as humidity, temperature, light, and oxygen. Therefore, encapsulation of EOs is an innovative option not only for preserving these substances but also for promoting their stability, controlling their release, and optimizing their efficiency and bioavailability. In this sense, this review aimed to describe current techniques and approaches used to incorporate natural hydrophobic compounds, covering EOs. It also examines whether encapsulation technology can be used efficiently in drug discovery and development. Studies have shown that microencapsulation, the use of nanoparticle, and liposomal are the most effective techniques for encapsulating EOs. Other encapsulation systems included spray drying, coacervation, and emulsification.

3.
Chem Biol Interact ; 392: 110907, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38395253

RESUMO

The regulation of gene expression is fundamental to health and life and is essentially carried out at the promoter region of the DNA of each gene. Depending on the molecular context, this region may be accessible or non-accessible (possibility of integration of RNA polymerase or not at this region). Among enzymes that control this process, DNA methyltransferase enzymes (DNMTs), are responsible for DNA demethylation at the CpG islands, particularly at the promoter regions, to regulate transcription. The aberrant activity of these enzymes, i.e. their abnormal expression or activity, can result in the repression or overactivation of gene expression. Consequently, this can generate cellular dysregulation leading to instability and tumor development. Several reports highlighted the involvement of DNMTs in human cancers. The inhibition or activation of DNMTs is a promising therapeutic approach in many human cancers. In the present work, we provide a comprehensive and critical summary of natural bioactive molecules as primary inhibitors of DNMTs in human cancers. The active compounds hold the potential to be developed as anti-cancer epidrugs targeting DNMTs.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Neoplasias , Humanos , DNA (Citosina-5-)-Metiltransferases/genética , Neoplasias/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Ilhas de CpG , Metilação de DNA , Epigênese Genética
4.
Cureus ; 16(2): e53654, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38327721

RESUMO

Introduction Since its emergence, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has undergone extensive genomic evolution, impacting public health policies, diagnosis, medication, and vaccine development. This study leverages advanced bioinformatics to assess the virus's temporal and regional genomic evolution from December 2019 to October 2023. Methods Our analysis incorporates 16,575 complete SARS-CoV-2 sequences collected from 214 countries. These samples were comparatively analyzed, with a detailed characterization of nucleic mutations, lineages, distribution, and evolutionary patterns during each year, using the Wuhan-Hu-1 strain as the reference. Results Our analysis has identified a total of 21,580 mutations that we classified into transient mutations, which diminished over time, and persistent mutations with steadily increasing frequencies. This mutation landscape led to a notable surge in the evolutionary rate, rising from 13 mutations per sample in 2020 to 96 by 2023, with minor geographic variations. The phylogenetic analysis unveiled three distinct evolutionary branches, each representing unique viral evolution pathways. These lineages exhibited a tendency for a reduced duration of dominance with a shortening prevalence period over time, as dominant strains were consistently replaced by more fit variants. Notably, the emergence of the Alpha and Delta variants in 2021 was followed by the subsequent dominance of Omicron clade variants that have branched into several recombinant variants in 2022, marking a significant shift in the viral landscape. Conclusion This study sheds light on the dynamic nature of SARS-CoV-2 evolution, emphasizing the importance of continuous and vigilant genomic surveillance. The dominance of recombinant lineages, coupled with the disappearance of local variants, underscores the virus's adaptability.

5.
Biomed Pharmacother ; 170: 115989, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103309

RESUMO

Cyanobacteria and microalgae contain various phytochemicals, including bioactive components in the form of secondary metabolites, namely flavonoids, phenolic acids, terpenoids, and tannins, with remarkable anticancer effects. This review highlights the recent advances in bioactive compounds, with potential anticancer activity, produced by cyanobacteria and microalgae. Previous in vitro investigations showed that many of these bioactive compounds exhibit potent effects against different human cancer types, such as leukemia and breast cancers. Multiple mechanisms implicated in the antitumor effect of these compounds were elucidated, including their ability to target cellular, subcellular, and molecular checkpoints linked to cancer development and promotion. Recent findings have highlighted various mechanisms of action of bioactive compounds produced by cyanobacteria and microalgae, including induction of autophagy and apoptosis, inhibition of telomerase and protein kinases, as well as modulation of epigenetic modifications. In vivo investigations have demonstrated a potent anti-angiogenesis effect on solid tumors, as well as a reduction in tumor volume. Some of these compounds were examined in clinical investigations for certain types of cancers, making them potent candidates/scaffolds for antitumor drug development.


Assuntos
Antineoplásicos , Cianobactérias , Microalgas , Neoplasias , Humanos , Microalgas/química , Cianobactérias/metabolismo , Fatores Biológicos , Antineoplásicos/química , Neoplasias/tratamento farmacológico
6.
Parasite ; 30: 64, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38117274

RESUMO

Blastocystosis is an infection caused by Blastocystis sp., which colonizes the digestive tract of various hosts, including humans, although its pathogenicity is debated. It is crucial to detect and distinguish the different forms of Blastocystis to understand better its impact on human health and its epidemiological evolution. This study evaluated three diagnostic methods on 105 stool samples: direct examination, culture in Jones' medium, and conventional PCR. PCR is considered the gold standard and revealed a high prevalence of Blastocystis (67.62%) compared to direct examination (20.95%) and culture in Jones' medium (51.43%). Although the sensitivity of direct examination and culture was 31% and 76.1%, respectively, their specificity was 100%. No significant risk factors were identified. A statistically significant association was observed between Blastocystis infection and abdominal pain. Microscopic analysis revealed various morphological forms. Molecular diagnosis is an essential tool to determine the true prevalence of Blastocystis, and studying the different forms of this microorganism will contribute to a better understanding of its biological cycle and, therefore, the impact of this emerging infection on human health.


Title: Prévalence de Blastocystis sp. au Maroc : évaluation comparative de trois méthodes de diagnostic et caractérisation des formes parasitaires en milieu de culture Jones. Abstract: La blastocystose est une infection causée par Blastocystis sp., qui colonise le tractus digestif de divers hôtes, y compris l'homme, bien que son pouvoir pathogène soit débattu. Il est crucial de détecter et de distinguer les différentes formes de Blastocystis pour mieux comprendre son impact sur la santé humaine et son évolution épidémiologique. Cette étude a évalué trois méthodes de diagnostic sur 105 échantillons de selles : l'examen direct, la culture en milieu de Jones et la PCR conventionnelle. La PCR, considérée comme méthode de référence, a révélé une prévalence élevée de Blastocystis (67,62 %) par rapport à l'examen direct (20,95 %) et à la culture en milieu de Jones (51,43 %). Bien que la sensibilité de l'examen direct et de la culture soit respectivement de 31 % et 76,1 %, leur spécificité était de 100 %. Aucun facteur de risque significatif n'a été identifié. Une association statistiquement significative a été observée entre l'infection à Blastocystis et les douleurs abdominales. L'analyse microscopique a révélé diverses formes morphologiques. Le diagnostic moléculaire est un outil essentiel pour déterminer la véritable prévalence de Blastocystis, et l'étude des différentes formes de ce microorganisme contribuera à une meilleure compréhension de son cycle biologique et, par conséquent de l'impact de cette infection émergente sur la santé humaine.


Assuntos
Infecções por Blastocystis , Blastocystis , Parasitos , Animais , Humanos , Blastocystis/genética , Infecções por Blastocystis/diagnóstico , Infecções por Blastocystis/epidemiologia , Marrocos/epidemiologia , Prevalência
7.
Pathog Glob Health ; : 1-12, 2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37635364

RESUMO

Among the numerous variants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that have been reported worldwide, the emergence of the Omicron variant has drastically changed the landscape of the coronavirus disease (COVID-19) pandemic. Here, we analyzed the genetic diversity of Moroccan SARS-CoV-2 genomes with a focus on Omicron variant after one year of its detection in Morocco in order to understand its genomic dynamics, features and its potential introduction sources. From 937 Omicron genomes, we identified a total of 999 non-unique mutations distributed across 92 Omicron lineages, of which 13 were specific to the country. Our findings suggest multiple introductory sources of the Omicron variant to Morocco. In addition, we found that four Omicron clades are more infectious in comparison to other Omicron clades. Remarkably, a clade of Omicron is particularly more transmissible and has become the dominant variant worldwide. Moreover, our assessment of Receptor-Binding Domain (RBD) mutations showed that the Spike K444T and N460K mutations enabled a clade higher ability of immune vaccine escape. In conclusion, our analysis highlights the unique genetic diversity of the Omicron variant in Moroccan SARS-CoV-2 genomes, with multiple introductory sources and the emergence of highly transmissible clades. The distinctiveness of the Moroccan strains compared to global ones underscores the importance of ongoing surveillance and understanding of local genomic dynamics for effective response strategies in the evolving COVID-19 pandemic.

8.
Crit Rev Food Sci Nutr ; : 1-20, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36908235

RESUMO

The field of nutrigenomics studies the interaction between nutrition and genetics, and how certain dietary patterns can impact gene expression and overall health. The Mediterranean diet (MedDiet), characterized by a high intake of fruits, vegetables, whole grains, and healthy fats, has been linked to better cardiovascular health (CVH) outcomes. This review summarizes the current state of research on the effects of nutrigenomics and MedDiet on cardiovascular health. Results suggest that MedDiet, through its impact on gene expression, can positively influence CVH markers such as blood pressure, lipid profile, and inflammation. However, more research is needed to fully understand the complex interactions between genetics, nutrition, and CVH, and to determine the optimal dietary patterns for individualized care. The aim of this scientific review is to evaluate the current evidence on the effects of nutrigenomics and MedDiet on cardiovascular health. The review summarizes the available studies that have investigated the relationship between nutrition, genetics, and cardiovascular health, and explores the mechanisms by which certain dietary patterns can impact CVH outcomes. The review focuses on the effects of MedDiet, a dietary pattern that is rich in whole foods and healthy fats, and its potential to positively influence CVH through its impact on gene expression. The review highlights the limitations of current research and the need for further studies to fully understand the complex interplay between nutrition, genetics, and cardiovascular health.

9.
Antonie Van Leeuwenhoek ; 116(1): 21-38, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36383330

RESUMO

Microorganisms in hot deserts face heat and other environmental conditions, such as desiccation, UV radiation, or low nutrient availability. Therefore, this hostile environment harbour microorganisms with acquired characteristics related to survival in their habitat, which can be exploited in biotechnology. In this work, the genome of Paenibacillus sp. MDMC362 isolated from the Merzouga desert in Morocco was sequenced to understand its survival strategy's genetic basis; and to evaluate the thermostability of a catalase extracted from genomic annotation files using molecular dynamics. Paenibacillus sp. MDMC362 genome was rich in genetic elements involved in the fight against different stresses, notably temperature stress, UV radiations, osmotic stress, carbon starvation, and oxidative stress. Indeed, we could identify genes of the operons groES-groEL and hrcA-grpE-dnaK and those involved in the different stages of sporulation, which can help the bacteria to survive the high temperatures imposed by a desertic environment. We also observed the genetic components of the UvrABC system and additional mechanisms involved in DNA repair, which help overcome UV radiation damage. Other genes have been identified in the genome, like those coding for ectoine and proline, that aids fight osmotic stress and desiccation. Catalase thermostability investigation using molecular dynamics showed that the protein reached stability and conserved its compactness at temperatures up to 373.15 K. These results suggest a potential thermostability of the enzyme. Since the studied protein is a core protein, thermostability could be conserved among Paenibacillus sp. MDMC362 closely related strains; however, bacteria from harsh environments may have a slight advantage regarding protein stability.


Assuntos
Paenibacillus , Catalase/genética , Paenibacillus/genética , Genômica , Sequência de Bases , Estresse Oxidativo
10.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36297347

RESUMO

Trichostatin A (TSA), a natural derivative of dienohydroxamic acid derived from a fungal metabolite, exhibits various biological activities. It exerts antidiabetic activity and reverses high glucose levels caused by the downregulation of brain-derived neurotrophic factor (BDNF) expression in Schwann cells, anti-inflammatory activity by suppressing the expression of various cytokines, and significant antioxidant activity by suppressing oxidative stress through multiple mechanisms. Most importantly, TSA exhibits potent inhibitory activity against different types of cancer through different pathways. The anticancer activity of TSA appeared in many in vitro and in vivo investigations that involved various cell lines and animal models. Indeed, TSA exhibits anticancer properties alone or in combination with other drugs used in chemotherapy. It induces sensitivity of some human cancers toward chemotherapeutical drugs. TSA also exhibits its action on epigenetic modulators involved in cell transformation, and therefore it is considered an epidrug candidate for cancer therapy. Accordingly, this work presents a comprehensive review of the most recent developments in utilizing this natural compound for the prevention, management, and treatment of various diseases, including cancer, along with the multiple mechanisms of action. In addition, this review summarizes the most recent and relevant literature that deals with the use of TSA as a therapeutic agent against various diseases, emphasizing its anticancer potential and the anticancer molecular mechanisms. Moreover, TSA has not been involved in toxicological effects on normal cells. Furthermore, this work highlights the potential utilization of TSA as a complementary or alternative medicine for preventing and treating cancer, alone or in combination with other anticancer drugs.

11.
J Infect Dev Ctries ; 16(8): 1258-1268, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36099368

RESUMO

INTRODUCTION: Since the COVID-19 pandemic began in December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continuously evolved with many variants of concern emerging across the world. METHODOLOGY: In order to monitor the evolution of these variants in Morocco, we analyzed a total of 2130 genomes of the delta variant circulating around the world. We also included 164 Moroccan delta variant sequences in our analysis. RESULTS: Our findings suggest at least four introductions from multiple international sources and a rise of a dominant delta sub-lineage AY.33 in Morocco. Moreover, we report three mutations in the N-terminal domain of the S protein specific to the Moroccan AY.33 isolates, T29A, T250I and T299I. The effect of these mutations on the secondary structure and the dynamic behavior of the S protein N-terminal domain was further determined. CONCLUSIONS: We conclude that these mutations might have functional consequences on the S protein of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Genômica , Humanos , Marrocos/epidemiologia , Pandemias , Filogeografia , SARS-CoV-2/genética
12.
Molecules ; 27(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35458763

RESUMO

Cancer is a complex pathology that causes a large number of deaths worldwide. Several risk factors are involved in tumor transformation, including epigenetic factors. These factors are a set of changes that do not affect the DNA sequence, while modifying the gene's expression. Histone modification is an essential mark in maintaining cellular memory and, therefore, loss of this mark can lead to tumor transformation. As these epigenetic changes are reversible, the use of molecules that can restore the functions of the enzymes responsible for the changes is therapeutically necessary. Natural molecules, mainly those isolated from medicinal plants, have demonstrated significant inhibitory properties against enzymes related to histone modifications, particularly histone deacetylases (HDACs). Flavonoids, terpenoids, phenolic acids, and alkaloids exert significant inhibitory effects against HDAC and exhibit promising epi-drug properties. This suggests that epi-drugs against HDAC could prevent and treat various human cancers. Accordingly, the present study aimed to evaluate the pharmacodynamic action of different natural compounds extracted from medicinal plants against the enzymatic activity of HDAC.


Assuntos
Neoplasias , Plantas Medicinais , Epigênese Genética , Epigenômica , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Humanos , Neoplasias/patologia , Plantas Medicinais/metabolismo , Processamento de Proteína Pós-Traducional
13.
Microbiol Resour Announc ; 11(5): e0016922, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35416694

RESUMO

Here, we report the near-complete genome sequence and genetic variations of a clinical sample of SARS-CoV-2 for the newly emerged Omicron variant (BA.1). The sample was collected from a nasopharyngeal swab of a Moroccan patient, and the sequencing was done using Ion S5 technology.

14.
Plant Physiol Biochem ; 167: 269-295, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34391201

RESUMO

Plants and microbes interact with each other via different chemical signaling pathways. At the risophere level, the microbes can secrete molecules, called elicitors, which act on their receptors located in plant cells. The so-called elicitor molecules as well as their actions differ according to the mcirobes and induce different bilogical responses in plants such as the synthesis of secondary metabolites. Microbial compounds induced phenotype changes in plants are known as elicitors and signaling pathways which integrate elicitor's signals in plants are called elicitation. In this review, the impact of microbial elicitors on the synthesis and the secretion of secondary metabolites in plants was highlighted. Moreover, biological properties of these bioactive compounds were also highlighted and discussed. Indeed, several bacteria, fungi, and viruses release elicitors which bind to plant cell receptors and mediate signaling pathways involved in secondary metabolites synthesis. Different phytochemical classes such as terpenoids, phenolic acids and flavonoids were synthesized and/or increased in medicinal plants via the action of microbial elicitors. Moreover, these compounds compounds exhibit numerous biological activities and can therefore be explored in drugs discovery.


Assuntos
Plantas Medicinais , Bactérias , Fungos , Células Vegetais , Metabolismo Secundário
15.
J Ethnopharmacol ; 276: 114171, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-33940085

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Centaurium erythraea is an important medicinal plant in many countries, e.g. Morocco, Algeria, Italy, Spain, Portugal, and countries of Balkan Peninsula. It is used in folk medicine to treat various illnesses. It is also used as an antiapoplectic, anticoagulant, anticholagogue, antipneumonic, hematocathartic, and as a hypotensive agent. AIM OF THE REVIEW: In this review, previous reports on the taxonomy, botanical description, geographic distribution, ethnomedicinal applications, phytochemistry, pharmacological properties, and toxicity of Centaurium erythraea were critically summarized. MATERIALS AND METHODS: Scientific search engines including PubMed, ScienceDirect, SpringerLink, Web of Science, Scopus, Wiley Online, SciFinder, and Google Scholar were consulted to collect data on C. erythraea. The data presented in this work summarized the main reports on C. erythraea phytochemical compounds, ethnomedicinal uses, and pharmacological activities. RESULTS: C. erythraea is used in traditional medicine to treat various diseases such as diabetes, fever, rhinitis, stomach ailments, urinary tract infections, dyspeptic complaints, loss of appetite, and hemorrhoids, and as diuretic. The essential oils and extracts of C. erythraea exhibited numerous biological properties such as antibacterial, antioxidant, antifungal, antileishmanial, anticancer, antidiabetic, anti-inflammatory, insecticidal, diuretic, gastroprotective, hepatoprotective, dermatoprotective, neuroprotective, and inhibitory agent for larval development. Phytochemical characterization of C. erythraea revealed the presence of several classes of secondary metabolites such as xanthonoids, terpenoids, flavonoids, phenolic acids, and fatty acids. CONCLUSIONS: Ethnomedicinal studies demonstrated the use of C. erythraea for the treatment of various disorders. Pharmacological reports showed that C. erythraea especially its aerial parts and roots exhibited potent, and beneficial activities. These findings confirmed the link between the traditional medicinal use and the results of the scientific biological experiments. Considering these results, further investigation using diverse in vivo pharmacological assays are strongly recommended to validate the results of its traditional use. Toxicological tests and pharmacokinetic studies are also required to validate the safety and efficacy of C. erythraea and its bioactive contents.


Assuntos
Centaurium/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Plantas Medicinais/química , Animais , Etnobotânica , Humanos , Medicina Tradicional , Compostos Fitoquímicos/toxicidade , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Plantas Medicinais/toxicidade
16.
Artigo em Inglês | MEDLINE | ID: mdl-33790978

RESUMO

The protection of agricultural crops and the preservation of the organoleptic and health qualities of food products represent a major challenge for the agricultural and agro-food industries. Essential oils have received greater attention as alternatives to replace the control strategies based on pesticides against phytopathogenic bacteria and synthetic compounds in food preservation. The aims of this work were to study the chemical composition of Teucrium polium subsp. polium and Micromeria graeca essential oils and to examine their antioxidant and antimicrobial effects. To carry out this work, the chemical composition of the essential oil was determined using gas chromatography (GC) with the detection feature of mass spectrometry (MS). Subsequently, the antioxidant activity was investigated by DPPH and FRAPS assays. The antimicrobial effect was studied against phytopathogenic and foodborne pathogenic bacteria using the disc and the microdilution methods. Our results showed that GC-MS analysis of EOs allowed the identification of 30 compounds in T. polium EO (TPpEO), while 5 compounds were identified in M. graeca EO (MGEO). TPpEO had as major compounds ß-pinene (19.82%) and germacrene D (18.33%), while geranial (36.93%) and z-citral (18.25%) were the main components of MGEO. The most potent activity was obtained from MGEO (IC50 = 189.7 ± 2.62 µg/mL) compared to TPpEO (IC50 = 208.33 ± 3.51 µg/mL. For the FRAP test, the highest reducing power was obtained from 1.32 ± 0.1 mg AAE/g of TPpEO compared to MGEO 0.51 ± 0.13 mg AAE/g of EO. Both EOs exhibited varying degrees of antibacterial activities against all the tested strains with inhibition zones in the range of 9.33 ± 0.57 mm to >65 mm and MIC values from 0.19 to 12.5 mg/mL. However, MGEO exhibits an interesting anticandidal effect with inhibition zone 44.33 ± 0.57 mm. The findings of this research establish the riches of EOs on volatile compounds, their important antioxidant activity, and their antimicrobial effect against the bacteria tested.

17.
Microbiol Resour Announc ; 10(16)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888505

RESUMO

Here, we report the near-complete genome sequence and the genetic variations of a clinical sample of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) harboring the N501Y mutation assigned to the B.1.1.7 lineage. The sample was collected from a nasopharyngeal swab of a female patient from Temara, Morocco, and the sequencing was done using Ion S5 technology.

18.
Microbiol Resour Announc ; 10(11)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737349

RESUMO

We report the nearly complete genome sequence and the genetic variations of a clinical sample of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) collected from a nasopharyngeal swab specimen from a male patient from Harhoura-Rabat, Morocco. The sequence, which was obtained using Ion Torrent technology, is valuable as it carries a recently described deletion (His69-Val70) and substitution (Asn439Lys).

19.
Pathogens ; 9(10)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050463

RESUMO

The COVID-19 pandemic has been ongoing since its onset in late November 2019 in Wuhan, China. Understanding and monitoring the genetic evolution of the virus, its geographical characteristics, and its stability are particularly important for controlling the spread of the disease and especially for the development of a universal vaccine covering all circulating strains. From this perspective, we analyzed 30,983 complete SARS-CoV-2 genomes from 79 countries located in the six continents and collected from 24 December 2019, to 13 May 2020, according to the GISAID database. Our analysis revealed the presence of 3206 variant sites, with a uniform distribution of mutation types in different geographic areas. Remarkably, a low frequency of recurrent mutations has been observed; only 169 mutations (5.27%) had a prevalence greater than 1% of genomes. Nevertheless, fourteen non-synonymous hotspot mutations (>10%) have been identified at different locations along the viral genome; eight in ORF1ab polyprotein (in nsp2, nsp3, transmembrane domain, RdRp, helicase, exonuclease, and endoribonuclease), three in nucleocapsid protein, and one in each of three proteins: Spike, ORF3a, and ORF8. Moreover, 36 non-synonymous mutations were identified in the receptor-binding domain (RBD) of the spike protein with a low prevalence (<1%) across all genomes, of which only four could potentially enhance the binding of the SARS-CoV-2 spike protein to the human ACE2 receptor. These results along with intra-genomic divergence of SARS-CoV-2 could indicate that unlike the influenza virus or HIV viruses, SARS-CoV-2 has a low mutation rate which makes the development of an effective global vaccine very likely.

20.
Microbiol Resour Announc ; 9(41)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033122

RESUMO

Helicobacter pylori affects up to 50% of people worldwide. Here, we present the draft genome sequences of six H. pylori strains isolated from Moroccan patients with different gastric diseases. Multilocus sequence typing analysis showed that all of the H. pylori isolates belonged to the hspWAfrica group.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...